Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present extensive ultraviolet, optical, and near-infrared (NIR) photometric and spectroscopic observations of the nearby hydrogen-poor superluminous supernova (SLSN-I) SN 2024rmj atz= 0.1189. SN 2024rmj reached a peak absolute magnitude ofMg ≈ −21.9, placing it at the luminous end of the SLSN-I distribution. The light curve exhibits a pronounced prepeak bump (≈60 days before the main peak) and a postpeak bump (≈55 days after the main peak). The bulk of the light curve is otherwise well fit by a magnetar spin-down model, with typical values (spin: ≈2.1 ms; magnetic field: ≈6 × 1013G; ejecta mass: ≈12M⊙). The optical spectra exhibit characteristic SLSN-I features and evolution, but with a relatively high velocity of ≈8000 km s−1postpeak. Most significantly, we find a clear detection of helium in the NIR spectra at Heiλ1.083μm andλ2.058μm, blueshifted by ≈15,000 km s−1(13 days before peak) and ≈13,000 km s−1(40 days after peak), indicating that helium is confined to the outermost ejecta; based on these NIR detections, we also identify likely contribution from Heiλ5876 in the optical spectra on a similar range of timescales. This represents the most definitive detection of helium in a bright SLSN-I to date, and indicates that progenitors with a thin helium layer can still explode as SLSNe.more » « lessFree, publicly-accessible full text available October 9, 2026
-
Abstract With the advent of the Vera C. Rubin Observatory, the discovery rate of supernovae (SNe) will surpass the rate of SNe with real time spectroscopic follow-up by 3 orders of magnitude. Accurate photometric classifiers are essential to both select interesting events for follow-up in real time and for archival population-level studies. In this work, we investigate the impact of observable host-galaxy information on the classification of SNe, both with and without additional light-curve and redshift information. We find that host-galaxy information alone can successfully isolate relatively pure (>90%) samples of Type Ia SNe with or without redshift information. With redshift information, we can additionally produce somewhat pure (>70%) samples of Type II SNe and superluminous SNe. Additionally with redshift information, host-galaxy properties do not significantly improve the accuracy of SN classification when paired with complete light curves. In the absence of redshift information, however, galaxy properties significantly increase the accuracy of photometric classification. As a part of this analysis, we present the first formal application of a new objective function, the weighted hierarchical cross entropy, to the problem of SN classification. This objective function more naturally accounts for the hierarchical nature of SN classes and, more broadly, transients. Finally, we present a new set of SN classifications for the Pan-STARRS Medium Deep Survey of SNe that lack spectroscopic redshift, increasing the full photometric sample to >4400 events.more » « less
-
Heteroaromatic species are commonly found in complex gaseous mixtures, from tobacco smoke to petroleum and asphaltene combustion products. At high temperatures, C–H bond rupture produces various dehydro radical isomers. We have used the spin–flip formulation of equation-of-motion coupled cluster theory with single and double substitutions (EOM-SF-CCSD) to characterize the energies and wave functions of the lowest lying singlet and triplet states of the diradical (2,3), (2,4), (2,5), and (3,4) di-dehydro isomers of pyrrole, furan, and thiophene. In all cases, these diradicals are minima on the broken-symmetry ωB97X-D/cc-pVDZ potential energy surface. In most cases, the diradical geometries distort to enhance through-space or through-bond coupling in the singlet states and to avoid Coulombic or exchange repulsion in the triplet states. EOM-SF-CCSD results indicate that all diradical isomers are two-configurational, closed shell singlet states. The only exceptions to this are for (2,3) and (2,4) thiophene and (2,3) pyrrole, which each contain more than two configurations. In all cases, the leading term in the multiconfigurational diradical wave function doubly occupies the symmetric radical σ orbital, indicative of either through-space or 1,3 through-bond coupling. We utilized the nucleus-independent chemical shift (NICS) approach to qualitatively assess aromaticity and find that this property varies and may be related to the energetic splittings in these diradical isomers.more » « less
-
Abstract We present a detailed study of SN 2024ahr, a hydrogen-poor superluminous supernova (SLSN-I), for which we determine a redshift ofz= 0.0861. SN 2024ahr has a peak absolute magnitude ofMg≈Mr≈ −21 mag, rest-frame rise and decline times (50% of peak) of about 40 and 80 days, respectively, and typical spectroscopic evolution in the optical band. Similarly, modeling of the UV/optical light curves with a magnetar spin-down engine leads to typical parameters: an initial spin period of ≈3.3 ms, a magnetic field strength of ≈6 × 1013G, and an ejecta mass of ≈9.5M⊙. Due to its relatively low redshift, we obtained a high signal-to-noise ratio near-IR (NIR) spectrum about 43 rest-frame days postpeak to search for the presence of helium. We do not detect any significant feature at the location of the Heiλ2.058μm feature and place a conservative upper limit of ∼0.05M⊙on the mass of helium in the outer ejecta. We detect broad features of Mgiλ1.575μm and Mgiiλ2.136μm, which are typical of Type Ic SNe, but with higher velocities. Examining the sample of SLSNe-I with NIR spectroscopy, we find that, unlike SN 2024ahr, these events are generally peculiar. This highlights the need for a large sample of prototypical SLSNe-I with NIR spectroscopy to constrain the fraction of progenitors with helium (Ib-like) and without helium (Ic-like) at the time of explosion, and hence the evolutionary path(s) leading to the rare outcome of SLSNe-I.more » « lessFree, publicly-accessible full text available July 3, 2026
-
Abstract We introduce a new, open-source, Python-based package,extrabol, for inferring the bolometric light curve evolution of extragalactic thermal transients.extraboluses non-parametric Gaussian Process regression for light curve estimation that requires minimal user interaction.extrabolis available via GitHub.more » « less
-
Abstract We present and analyze the extensive optical broadband photometry of the Type II SN 2023ixf up to 1 yr after explosion. We find that, when compared to two preexisting model grids, the bolometric light curve is consistent with drastically different combinations of progenitor and explosion properties. This may be an effect of known degeneracies in Type IIP light-curve models. We independently compute a large grid ofMESA+STELLAsingle-star progenitor and light-curve models with various zero-age main-sequence masses, mass-loss efficiencies, and convective efficiencies. Using the observed progenitor variability as an additional constraint, we select stellar models consistent with the pulsation period and explode them according to previously established scaling laws to match plateau properties. Our hydrodynamic modeling indicates that SN 2023ixf is most consistent with a moderate-energy ( erg) explosion of an initially high-mass red supergiant progenitor (≳16.5M⊙) that lost a significant amount of mass in its prior evolution, leaving a low-mass hydrogen envelope (≲3M⊙) at the time of explosion, with a radius ≳950R⊙and a synthesized56Ni mass of ≈0.068M⊙. We posit that previous mass transfer in a binary system may have stripped the envelope of SN 2023ixf’s progenitor. The analysis method with pulsation period presented in this work offers a way to break degeneracies in light-curve modeling in the future, particularly with the upcoming Vera C. Rubin Observatory Legacy Survey of Space and Time, when a record of progenitor variability will be more common.more » « lessFree, publicly-accessible full text available September 4, 2026
-
Abstract We present an extensive Hubble Space Telescope rest-frame UV imaging study of the locations of Type I superluminous supernovae (SLSNe) within their host galaxies. The sample includes 65 SLSNe with detected host galaxies in the redshift rangez≈ 0.05–2. Using precise astrometric matching with SN images, we determine the distributions of the physical and host-normalized offsets relative to the host centers, as well as the fractional flux distribution relative to the underlying UV light distributions. We find that the host-normalized offsets of SLSNe roughly track an exponential disk profile, but exhibit an overabundance of sources with large offsets of 1.5–4 times their hosts' half-light radii. The SLSNe normalized offsets are systematically larger than those of long gamma-ray bursts (LGRBs), and even Type Ib/c and Type II SNe. Furthermore, we find from a Monte Carlo procedure that about of SLSNe occur in the dimmest regions of their host galaxies, with a median fractional flux value of 0.16, in stark contrast to LGRBs and Type Ib/c and Type II SNe. We do not detect any significant trends in the locations of SLSNe as a function of redshift, or as a function of explosion and magnetar engine parameters inferred from modeling of their optical light curves. The significant difference in SLSN locations compared to LGRBs (and normal core-collapse SNe) suggests that at least some of their progenitors follow a different evolutionary path. We speculate that SLSNe arise from massive runaway stars from disrupted binary systems, with velocities of ∼102km s−1.more » « less
-
Abstract Dust from core-collapse supernovae (CCSNe), specifically Type IIP supernovae (SNe IIP), has been suggested to be a significant source of the dust observed in high-redshift galaxies. CCSNe eject large amounts of newly formed heavy elements, which can condense into dust grains in the cooling ejecta. However, infrared (IR) observations of typical CCSNe generally measure dust masses that are too small to account for the dust production needed at high redshifts. Type IIn SNe (SNe IIn), classified by their dense circumstellar medium, are also known to exhibit strong IR emission from warm dust, but the dust origin and heating mechanism have generally remained unconstrained because of limited observational capabilities in the mid-IR (MIR). Here, we present a JWST/MIRI Medium Resolution Spectrograph spectrum of the SN IIn SN 2005ip nearly 17 yr post-explosion. The SN IIn SN 2005ip is one of the longest-lasting and most well-studied SNe observed to date. Combined with a Spitzer MIR spectrum of SN 2005ip obtained in 2008, this data set provides a rare 15 yr baseline, allowing for a unique investigation of the evolution of dust. The JWST spectrum shows the emergence of an optically thin silicate dust component (≳0.08M⊙) that is either not present or more compact/optically thick in the earlier Spitzer spectrum. Our analysis shows that this dust is likely newly formed in the cold, dense shell (CDS), between the forward and reverse shocks, and was not preexisting at the time of the explosion. There is also a smaller mass of carbonaceous dust (≳0.005M⊙) in the ejecta. These observations provide new insights into the role of SN dust production, particularly within the CDS, and its potential contribution to the rapid dust enrichment of the early Universe.more » « lessFree, publicly-accessible full text available May 29, 2026
-
Abstract We present optical/UV observations and the spectroscopic classification of the transient AT2023vto as a tidal disruption event (TDE) atz= 0.4846. The spectrum is dominated by a broad blueshifted Heiiλ4686 emission line, classifying it as a member of the TDE-He class. The light curve exhibits a persistent blue color ofg−r≈ −0.4 mag, long rise, and decline timescale, with a large peak absolute magnitude ofMg≈ −23.2, making it the most luminous of the classical optical TDEs (H, H+He, He) discovered to date by about 1.5 mag. We identify the host galaxy of AT2023vto in archival Pan-STARRS images and find that the transient is located at the galaxy center. Modeling the light curves of AT2023vto, we find that it resulted from the disruption of a ≈8M⊙star by a ≈107M⊙supermassive black hole. The star mass is about 5 times larger than the highest star masses previously inferred in TDEs, and the black hole mass is at the high end of the distribution. AT2023vto is comparable in luminosity and timescale to some putative TDEs (blue featureless continuum), as well as to the mean of a recently identified population of ambiguous nuclear transients (ANTs). ANTs have been speculated to arise from tidal disruptions of massive stars, perhaps in active galactic nuclei, and AT2023vto may represent a similar case to ANTs but in a dormant black hole, thereby bridging the TDE and ANT populations. We anticipate that the Rubin Observatory/LSST will uncover similar luminous TDEs toz∼ 3.more » « less
An official website of the United States government
